

TESTE ENZIMÁTICO PARA DETERMINAÇÃO DE ÁCIDO ACÉTICO EM MOSTO DE UVA E VINHO

PRODUTO

Produto no. 4A100, para 30 testes, somente para uso in vitro.

CONTEÚDO

O kit inclui os seguintes reagentes:

N.º do reagente	Reagente	Preparação	Quantidade	Estabilidade
1	Buffer (tampão)	Não requer	33 mL	Os reagentes são estáveis por 18 meses a 4°C ou até a data de validade do kit, o que ocorrer primeiro.
2	Coenzimas (ATP/CoA/NAD)	Não requer	6.6 mL	
3	CS/MDH	Agite suavemente antes de usar	0.4 mL	
4	ACS	Agite suavemente antes de usar	0.7 mL	
5	Padrão	Não requer	3.3 mL	

O prazo de validade dos reagentes 1 e 2 pode ser estendido colocando alíquotas em um freezer.

Não congele os reagentes 3 e 4.

Não armazenar os reagentes na temperatura recomendada reduzirá sua vida útil.

Para a concentração do Padrão, consulte o rótulo do frasco.

Recomendações de segurança

- Use óculos de segurança
- Reagente 1 é levemente corrosivo
- Não ingerir Buffer (tampão) ou Padrão, pois eles contêm azida de sódio como estabilizador

PROCEDIMENTO

Parâmetros operacionais

Comprimento de onda 340 nm

Cubeta 1 cm, quartzo, sílica, metacrilato ou poliestireno

Temperatura 20 – 25°C Volume final da cubeta 3,23 mL

Zero contra o ar, sem a cubeta no feixe de luz

PREPARAÇÃO DA AMOSTRA

As amostras devem ser diluídas com água destilada para garantir que a concentração na solução não seja maior que 0,25 g/L. Para a maioria das amostras, uma diluição de 1 em 5 deve ser suficiente. Idealmente, as leituras da absorbância A3 não devem ser maiores que 1,20 unidades de absorbância.

Vinhos tintos não diluídos ou amostras de suco não diluído e altamente coloridas requerem descoloração.

Para descolorir, adicione aproximadamente 0,1 g de PVPP a 5 mL de amostra em um tubo de ensaio. Agite bem por cerca de 1 minuto. A clarificação é obtida por decantação ou filtragem através de papel de filtro Whatman No. 1.

ANÁLISE DA AMOSTRA

a. Pipete os seguintes volumes dos reagentes nas cubetas:

Reagente	Branco	Padrão	Amostra
1. Buffer (tampão)	1.00 mL (1000 µL)	1.00 mL (1000 µL)	1.00 mL (1000 µL)
Água destilada	2.00 mL (2000 µL)	1.90 mL (1900 µL)	1.90 mL (1900 µL)
2. Coenzimas	0.20 mL (200 µL)	0.20 mL (200 µL)	0.20 mL (200 μL)
Amostra ou Padrão		0.10 mL (100 µL)	0.10 mL (100 µL)

- b. Misture bem por inversão e leia as absorbâncias, A₁.
- c. Pipete o seguinte reagente nas cubetas:

3. CS/MDH 0.01 mL (10μL) 0.01 mL (10μL) 0.01 mL (10μL)	3. CS/MDH	0.01 mL (10μL)	0.01 mL (10µL)	0.01 mL (10μL)
--	-----------	----------------	----------------	----------------

d Misture bem por inversão e leia as absorbâncias, A2, após 3 minutos.

4. ACS 0.02 mL (20μL)	0.02 mL (20μL)	0.02 mL (20μL)
-----------------------	----------------	----------------

e. Misture bem por inversão e leia as absorbâncias, A₃, após 20 minutos.

CÁLCULOS*

1. Calcule as diferenças de absorbância $(A_2 - A_1)$ e $(A_3 - A_1)$ para o Branco, Padrão e Amostras para obter ΔA_1 e ΔA_2 :

Diferença de absorbância, $\Delta A_1 = A_2 - A_1$ Diferença de absorbância, $\Delta A_2 = A_3 - A_1$

2. Calcule a absorbância corrigida para as amostras e/ou padrão, ΔA_{ac,} usando a fórmula:

$$\Delta A_{ac} = \left[(\Delta A_2)_{amostra} - \underline{(\Delta A_1)^2}_{amostra} \right] - \left[(\Delta A_2)_{branco} - \underline{(\Delta A_1)^2}_{branco} \right]$$

$$(\Delta A_2)_{amostra} - \underline{(\Delta A_2)}_{branco}$$

3. Calcule a concentração de ácido acético da seguinte forma:

Concentração de ácido acético (g/L) = ΔA_{ac} x 0.308 x Fator de diluição

* Uma planilha de cálculo está disponível para download em https://www.vintessential.com.au/resources/calculation-worksheets/

REFERÊNCIA

1. Bergmeyer, H.U. *et al* 1984, *Methods of Enzymatic Analysis*, 3rd ed., vol. 6, pp. 639-645; Verlag Chemie, Weinheim.