

## Vintessential Phosphoric Acid 85% (Vintessential Phosphoric Acid 85%)

## **Vintessential Laboratories**

Chemwatch Hazard Alert Code:

Chemwatch: **5158-75**Version No: **2.1.1.1** 

Safety Data Sheet according to WHS and ADG requirements

Issue Date: **12/08/2014**Print Date: **12/21/2016**L.GHS.AUS.EN

## SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

| P | rodi | ict | ldan | tifier |  |
|---|------|-----|------|--------|--|
| г | ıvu  | ucı | ıuen | unei   |  |

| Product name                  | Vintessential Phosphoric Acid 85% (Vintessential Phosphoric Acid 85%) |  |
|-------------------------------|-----------------------------------------------------------------------|--|
| Synonyms                      | Not Available                                                         |  |
| Proper shipping name          | PHOSPHORIC ACID, SOLUTION                                             |  |
| Other means of identification | Not Available                                                         |  |

## Relevant identified uses of the substance or mixture and uses advised against

Relevant identified Laboratory chemical.

## Details of the supplier of the safety data sheet

| Registered company name | Vintessential Laboratories                   |
|-------------------------|----------------------------------------------|
| Address                 | 32 BRASSER AVENUE DROMANA VIC 3936 Australia |
| Telephone               | +61 3 5987 2242                              |
| Fax                     | +61 3 5987 3303                              |
| Website                 | Not Available                                |
| Email                   | Not Available                                |

## Emergency telephone number

| Association /<br>Organisation     | Not Available   |
|-----------------------------------|-----------------|
| Emergency telephone numbers       | +61 405 318 590 |
| Other emergency telephone numbers | Not Available   |

## **SECTION 2 HAZARDS IDENTIFICATION**

## Classification of the substance or mixture

| Poisons Schedule              | S6                                                                                                                                                                    |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Classification <sup>[1]</sup> | Metal Corrosion Category 1, Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 1A, Serious Eye Damage Category 1, Chronic Aquatic Hazard Category 4 |

Page 2 of 13

## Vintessential Phosphoric Acid 85% (Vintessential Phosphoric Acid 85%)

Issue Date: **12/08/2014**Print Date: **12/21/2016** 

Legend:

1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI

## Label elements

#### **GHS** label elements





SIGNAL WORD

DANGER

## Hazard statement(s)

| H290 | May be corrosive to metals.                             |
|------|---------------------------------------------------------|
| H302 | Harmful if swallowed.                                   |
| H314 | Causes severe skin burns and eye damage.                |
| H318 | Causes serious eye damage.                              |
| H413 | May cause long lasting harmful effects to aquatic life. |

## Precautionary statement(s) Prevention

| P260 | Do not breathe dust/fume/gas/mist/vapours/spray.                           |
|------|----------------------------------------------------------------------------|
| P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
| P234 | Keep only in original container.                                           |
| P270 | Do not eat, drink or smoke when using this product.                        |
| P273 | Avoid release to the environment.                                          |

## Precautionary statement(s) Response

| P301+P330+P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.                                                                               |
|----------------|----------------------------------------------------------------------------------------------------------------------------------|
| P303+P361+P353 | IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.                       |
| P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
| P310           | Immediately call a POISON CENTER or doctor/physician.                                                                            |
| P363           | Wash contaminated clothing before reuse.                                                                                         |
| P390           | Absorb spillage to prevent material damage.                                                                                      |
| P301+P312      | IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.                                                       |
| P304+P340      | IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.                                 |

## Precautionary statement(s) Storage

## Precautionary statement(s) Disposal

**P501** Dispose of contents/container in accordance with local regulations.

## SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

#### **Substances**

See section below for composition of Mixtures

## **Mixtures**

| CAS No    | %[weight] | Name            |
|-----------|-----------|-----------------|
| 7664-38-2 | 75-95     | phosphoric acid |
| 7732-18-5 | <30       | <u>water</u>    |

## **SECTION 4 FIRST AID MEASURES**

## **Description of first aid measures**

Chemwatch: 5158-75 Page 3 of 13 Issue Date: 12/08/2014 Print Date: 12/21/2016

#### Version No: 2.1.1.1 Vintessential Phosphoric Acid 85% (Vintessential Phosphoric Acid 85%)

| Eye Contact  | If this product comes in contact with the eyes:  Immediately hold eyelids apart and flush the eye continuously with running water.  Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.  Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.  Transport to hospital or doctor without delay.  Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Skin Contact | If skin contact occurs:  Immediately remove all contaminated clothing, including footwear.  Flush skin and hair with running water (and soap if available).  Seek medical attention in event of irritation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Inhalation   | <ul> <li>If fumes or combustion products are inhaled remove from contaminated area.</li> <li>Lay patient down. Keep warm and rested.</li> <li>Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.</li> <li>Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.</li> <li>Transport to hospital, or doctor, without delay.</li> <li>Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema.</li> <li>Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs).</li> <li>As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested.</li> <li>Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered.</li> <li>This must definitely be left to a doctor or person authorised by him/her.</li> <li>(ICSC13719)</li> </ul> |
| Ingestion    | <ul> <li>For advice, contact a Poisons Information Centre or a doctor at once.</li> <li>Urgent hospital treatment is likely to be needed.</li> <li>If swallowed do NOT induce vomiting.</li> <li>If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.</li> <li>Observe the patient carefully.</li> <li>Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.</li> <li>Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.</li> <li>Transport to hospital or doctor without delay.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## Indication of any immediate medical attention and special treatment needed

For acute or short term repeated exposures to strong acids:

- · Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
- Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling
- ▶ Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise.
- > Strong acids produce a coagulation necrosis characterised by formation of a coagulum (eschar) as a result of the dessicating action of the acid on proteins in specific tissues.

#### INGESTION:

- Immediate dilution (milk or water) within 30 minutes post ingestion is recommended.
- DO NOT attempt to neutralise the acid since exothermic reaction may extend the corrosive injury.
- Be careful to avoid further vomit since re-exposure of the mucosa to the acid is harmful. Limit fluids to one or two glasses in an adult.
- Charcoal has no place in acid management.
- ▶ Some authors suggest the use of lavage within 1 hour of ingestion.

#### SKIN:

- · Skin lesions require copious saline irrigation. Treat chemical burns as thermal burns with non-adherent gauze and wrapping.
- ▶ Deep second-degree burns may benefit from topical silver sulfadiazine.

## EYE:

- Eye injuries require retraction of the eyelids to ensure thorough irrigation of the conjuctival cul-de-sacs. Irrigation should last at least 20-30 minutes. DO NOT use neutralising agents or any other additives. Several litres of saline are required.
- ▶ Cycloplegic drops, (1% cyclopentolate for short-term use or 5% homatropine for longer term use) antibiotic drops, vasoconstrictive agents or artificial tears may be indicated dependent on the severity of the injury.
- · Steroid eye drops should only be administered with the approval of a consulting ophthalmologist).

[Ellenhorn and Barceloux: Medical Toxicology]

## **SECTION 5 FIREFIGHTING MEASURES**

## **Extinguishing media**

- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).

Chemwatch: 5158-75 Page 4 of 13

Version No: 2.1.1.1 Vintessential Phosphoric Acid 85% (Vintessential Phosphoric Acid 85%)

Issue Date: 12/08/2014 Print Date: 12/21/2016

· Carbon dioxide.

#### Special hazards arising from the substrate or mixture

| Fire Incompatibility | None known. |
|----------------------|-------------|
|----------------------|-------------|

## Advice for firefighters

Fire Fighting

- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- ▶ Do not approach containers suspected to be hot.
- ▶ Cool fire exposed containers with water spray from a protected location.
- ▶ If safe to do so, remove containers from path of fire.
- ▶ Equipment should be thoroughly decontaminated after use.

## Fire/Explosion Hazard

- ► Non combustible.
- ▶ Not considered to be a significant fire risk.
- ▶ Acids may react with metals to produce hydrogen, a highly flammable and explosive gas.
- ▶ Heating may cause expansion or decomposition leading to violent rupture of containers.
- ▶ May emit corrosive, poisonous fumes. May emit acrid smoke.

Decomposition may produce toxic fumes of:

phosphorus oxides (POx)

**HAZCHEM** 

## **SECTION 6 ACCIDENTAL RELEASE MEASURES**

#### Personal precautions, protective equipment and emergency procedures

See section 8

## **Environmental precautions**

See section 12

## Methods and material for containment and cleaning up

| Minor Spills | <ul> <li>Clean up all spills immediately.</li> <li>Avoid breathing vapours and contact with skin and eyes.</li> <li>Control personal contact with the substance, by using protective equipment.</li> <li>Contain and absorb spill with sand, earth, inert material or vermiculite.</li> <li>Wipe up.</li> <li>Place in a suitable, labelled container for waste disposal.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Major Spills | <ul> <li>Clear area of personnel and move upwind.</li> <li>Alert Fire Brigade and tell them location and nature of hazard.</li> <li>Wear full body protective clothing with breathing apparatus.</li> <li>Prevent, by any means available, spillage from entering drains or water course.</li> <li>Stop leak if safe to do so.</li> <li>Contain spill with sand, earth or vermiculite.</li> <li>Collect recoverable product into labelled containers for recycling.</li> <li>Neutralise/decontaminate residue (see Section 13 for specific agent).</li> <li>Collect solid residues and seal in labelled drums for disposal.</li> <li>Wash area and prevent runoff into drains.</li> <li>After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.</li> <li>If contamination of drains or waterways occurs, advise emergency services.</li> </ul> |

Personal Protective Equipment advice is contained in Section 8 of the SDS.

## **SECTION 7 HANDLING AND STORAGE**

## Precautions for safe handling

## ▶ DO NOT allow clothing wet with material to stay in contact with skin

- ▶ Limit all unnecessary personal contact.
- Wear protective clothing when risk of exposure occurs.

#### ▶ Use in a well-ventilated area. Safe handling

- Avoid contact with incompatible materials.
- ► When handling, **DO NOT** eat, drink or smoke.
- ▶ Keep containers securely sealed when not in use.
- Avoid physical damage to containers.

Version No: **2.1.1.1** 

#### Vintessential Phosphoric Acid 85% (Vintessential Phosphoric Acid 85%)

Issue Date: **12/08/2014**Print Date: **12/21/2016** 

- ▶ Always wash hands with soap and water after handling.
- ► Work clothes should be laundered separately.
- ▶ Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Store in original containers.
- ▶ Keep containers securely sealed.
- ▶ Store in a cool, dry, well-ventilated area.
- ▶ Store away from incompatible materials and foodstuff containers.
- ▶ Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

#### Conditions for safe storage, including any incompatibilities

#### Suitable container

Other information

- Glass container is suitable for laboratory quantities
- DO NOT use aluminium or galvanised containers

Polyethylene or polypropylene container

Polylined drum

#### Storage incompatibility

- ▶ Segregate from alkalies, oxidising agents and chemicals readily decomposed by acids, i.e. cyanides, sulfides, carbonates.
- ▶ Reacts with mild steel, galvanised steel / zinc producing hydrogen gas which may form an explosive mixture with air.

#### SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

#### **Control parameters**

## OCCUPATIONAL EXPOSURE LIMITS (OEL)

#### INGREDIENT DATA

| Source                          | Ingredient      | Material name   | TWA     | STEL    | Peak          | Notes         |
|---------------------------------|-----------------|-----------------|---------|---------|---------------|---------------|
| Australia Exposure<br>Standards | phosphoric acid | Phosphoric acid | 1 mg/m3 | 3 mg/m3 | Not Available | Not Available |

## **EMERGENCY LIMITS**

| Ingredient      | Material name   | TEEL-1        | TEEL-2        | TEEL-3        |  |
|-----------------|-----------------|---------------|---------------|---------------|--|
| phosphoric acid | Phosphoric acid | Not Available | Not Available | Not Available |  |
|                 |                 |               |               |               |  |
| Ingredient      | Original IDLH   |               | Revised IDLH  |               |  |
| phosphoric acid | 10,000 mg/m3    |               | 1,000 mg/m3   |               |  |
| water           | Not Available   |               | Not Available |               |  |

#### MATERIAL DATA

The saturated vapour concentration of phosphoric acid exceeds the TLV. The TLV-TWA is based by analogy from comparable experience and data for sulfuric acid. Exposure at or below this limit is thought to prevent throat irritation amongst unacclimatised workers.

Fumes of phosphorus pentoxide at concentrations between 0.8 and 5.4 mg/m3 were reported to be noticeable but not uncomfortable whilst concentrations between 3.6 and 11.3 mg/m3 produced coughing in unacclimatised workers but were tolerable. Concentrations of 100 mg/m3 were unbearable except in inured workers.

## **Exposure controls**

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or

# Appropriate engineering controls

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant: Air Speed:

Chemwatch: 5158-75 Page 6 of 13 Issue Date: 12/08/2014 Version No: 2.1.1.1 Print Date: 12/21/2016

#### Vintessential Phosphoric Acid 85% (Vintessential Phosphoric Acid 85%)

| solvent, vapours, degreasing etc., evaporating from tank (in still air).                                                                                                                                            | 0.25-0.5 m/s<br>(50-100 f/min)  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s<br>(100-200 f/min.)   |
| direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)                                                      | 1-2.5 m/s<br>(200-500 f/min.)   |
| grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).                                                                | 2.5-10 m/s<br>(500-2000 f/min.) |

Within each range the appropriate value depends on:

| Lower end of the range                                     | Upper end of the range           |
|------------------------------------------------------------|----------------------------------|
| 1: Room air currents minimal or favourable to capture      | 1: Disturbing room air currents  |
| 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity |
| 3: Intermittent, low production.                           | 3: High production, heavy use    |
| 4: Large hood or large air mass in motion                  | 4: Small hood-local control only |

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

## Personal protection









#### ▶ Chemical goggles.

Full face shield may be required for supplementary but never for primary protection of eyes.

## Eye and face protection

► Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

## Skin protection

## See Hand protection below

- ▶ Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber
- ▶ When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove

## Hands/feet protection

Page 7 of 13

## Vintessential Phosphoric Acid 85% (Vintessential Phosphoric Acid 85%)

Issue Date: **12/08/2014**Print Date: **12/21/2016** 

selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. **Body protection** See Other protection below Overalls. ▶ PVC Apron. ▶ PVC protective suit may be required if exposure severe. Other protection ► Eyewash unit. ▶ Ensure there is ready access to a safety shower.

## Recommended material(s)

Thermal hazards

#### **GLOVE SELECTION INDEX**

Glove selection is based on a modified presentation of the:

#### "Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Vintessential Phosphoric Acid 85% (Vintessential Phosphoric Acid 85%)

Not Available

| Material          | СРІ |
|-------------------|-----|
| NEOPRENE          | A   |
| BUTYL             | С   |
| NAT+NEOPR+NITRILE | С   |
| NATURAL RUBBER    | С   |
| NATURAL+NEOPRENE  | С   |
| NEOPRENE/NATURAL  | С   |
| NITRILE           | С   |
| NITRILE+PVC       | С   |
| PE                | С   |
| PVA               | С   |
| PVC               | С   |
| SARANEX-23        | С   |
| VITON             | С   |

\* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

**NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

\* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

## Respiratory protection

Type B-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

| Required<br>Minimum<br>Protection Factor | Half-Face<br>Respirator | Full-Face<br>Respirator | Powered Air<br>Respirator  |
|------------------------------------------|-------------------------|-------------------------|----------------------------|
| up to 10 x ES                            | B-AUS P2                | -                       | B-PAPR-AUS /<br>Class 1 P2 |
| up to 50 x ES                            | -                       | B-AUS / Class<br>1 P2   | -                          |
| up to 100 x ES                           | -                       | B-2 P2                  | B-PAPR-2 P2 ^              |

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

## **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES**

## Information on basic physical and chemical properties

Appearance Clear, odourless viscous acidic liquid; mixes with water.

Physical state

Liquid

Relative density

(Water = 1)

1.58-1.69

Chemwatch: 5158-75

Page 8 of 13 Issue Date: 12/08/2014 Version No: 2.1.1.1 Print Date: 12/21/2016 Vintessential Phosphoric Acid 85% (Vintessential Phosphoric Acid 85%)

| Odour                                        | Not Available  | Partition coefficient n-octanol / water | Not Available  |
|----------------------------------------------|----------------|-----------------------------------------|----------------|
| Odour threshold                              | Not Available  | Auto-ignition temperature (°C)          | Not Applicable |
| pH (as supplied)                             | 1.5            | Decomposition temperature               | Not Available  |
| Melting point / freezing point (°C)          | Not Available  | Viscosity (cSt)                         | Not Available  |
| Initial boiling point and boiling range (°C) | Not Available  | Molecular weight<br>(g/mol)             | Not Applicable |
| Flash point (°C)                             | Not Applicable | Taste                                   | Not Available  |
| Evaporation rate                             | Not Available  | Explosive properties                    | Not Available  |
| Flammability                                 | Not Applicable | Oxidising properties                    | Not Available  |
| Upper Explosive Limit (%)                    | Not Applicable | Surface Tension<br>(dyn/cm or mN/m)     | Not Available  |
| Lower Explosive Limit (%)                    | Not Applicable | Volatile Component<br>(%vol)            | Not Available  |
| Vapour pressure (kPa)                        | Not Available  | Gas group                               | Not Available  |
| Solubility in water (g/L)                    | Miscible       | pH as a solution (1%)                   | Not Available  |
| Vapour density (Air = 1)                     | Not Available  | VOC g/L                                 | Not Applicable |

#### **SECTION 10 STABILITY AND REACTIVITY**

| Reactivity                             | See section 7                                                                                                                                                                                                           |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical stability                     | <ul> <li>Contact with alkaline material liberates heat</li> <li>Unstable in the presence of incompatible materials.</li> <li>Product is considered stable.</li> <li>Hazardous polymerisation will not occur.</li> </ul> |
| Possibility of<br>hazardous reactions  | See section 7                                                                                                                                                                                                           |
| Conditions to avoid                    | See section 7                                                                                                                                                                                                           |
| Incompatible materials                 | See section 7                                                                                                                                                                                                           |
| Hazardous<br>decomposition<br>products | See section 5                                                                                                                                                                                                           |

## **SECTION 11 TOXICOLOGICAL INFORMATION**

## Information on toxicological effects

Not normally a hazard due to non-volatile nature of product

## Inhaled

Acidic corrosives produce respiratory tract irritation with coughing, choking and mucous membrane damage. Symptoms of exposure may include dizziness, headache, nausea and weakness. In more severe exposures, pulmonary oedema may be evident either immediately or after a latent period of 5-72 hours. Symptoms of pulmonary oedema include a tightness in the chest, dyspnoea, frothy sputum and cyanosis. Examination may reveal hypotension, a weak and rapid pulse and moist rates. Death, due to anoxia, may occur several hours after onset of the pulmonary oedema.

Inhalation of phosphoric acid vapour or mist may cause choking, coughing, headache, weakness and dizziness. Prolonged or repeated inhalation of vapour or mist may cause pulmonary oedema (lung damage) and cyanosis

Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may produce serious damage to the health of the individual.

Exposure to high concentrations causes bronchitis and is characterised by the onset of haemorrhagic pulmonary oedema.

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion.

#### Ingestion

Ingestion of acidic corrosives may produce circumoral burns with a distinct discolouration of the mucous membranes of the mouth, throat and oesophagus. Immediate pain and difficulties in swallowing and speaking may also be evident. Oedema of the epiglottis may produce respiratory distress and possibly, asphyxia. Nausea, vomiting, diarrhoea and a pronounced thirst may occur. More severe exposures may produce a vomitus containing fresh or dark blood and large shreds of mucosa.

Page 9 of 13

Issue Date: 12/08/2014 Vintessential Phosphoric Acid 85% (Vintessential Phosphoric Acid 85%)

Print Date: 12/21/2016

Shock, with marked hypotension, weak and rapid pulse, shallow respiration and clammy skin may be symptomatic of the exposure. Circulatory collapse may, if left untreated, result in renal failure. Severe cases may show gastric and oesophageal perforation with peritonitis, fever and abdominal rigidity. Stricture of the oesophageal, gastric and pyloric sphincter may occur as within several weeks or may be delayed for years. Death may be rapid and often results from asphyxia, circulatory collapse or aspiration of even minute amounts. Delayed deaths may be due to peritonitis, severe nephritis or pneumonia. Coma and convulsions may be terminal.

Phosphates are slowly and incompletely absorbed from the gastrointestinal tract and are unlikely (other than in abuse) to produce the systemic effects which occur when introduced by other routes. Such effects include vomiting, lethargy, fever, diarrhoea, falls in blood pressure, slow pulse, cyanosis, carpal spasm, coma and tetany. These effects result following sequestration of blood calcium.

Ingestion of large amounts of phosphate salts (over 1 gm for an adult) may produce osmotic catharsis resulting in diarrhoea and probably, abdominal cramp. Large doses (4-8 gm) will almost certainly produce these effects in most individuals. Most of the ingested salt will be excreted in the faeces of healthy individuals without producing systemic toxicity. Doses in excess of 10 gm may produce systemic toxicity.

Ingestion of large quantity of phosphoric acid may cause severe abdominal pains, thirst, acidaemia, difficult breathing, convulsions, collapse, shock and death.

Although less hazardous than nitric and sulfuric acid, phosphoric acid has equal corrosive action upon ingestion. Death of an individual 19 days after ingestion of phosphoric acid was due to recurrent internal haemorrhage. Necrosis of the upper and lower digestive tract and pancreas was evident at autopsy.

## **Skin Contact**

The material can produce chemical burns following direct contact with the skin.

Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Open cuts, abraded or irritated skin should not be exposed to this material

Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue.

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

## Eve

The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. Direct eye contact with acid corrosives may produce pain, lachrymation, photophobia and burns. Mild burns of the epithelia generally recover rapidly and completely. Severe burns produce long-lasting and possible irreversible damage. The appearance of the burn may not be apparent for several weeks after the initial contact. The cornea may ultimately become deeply vascularised and opaque resulting in blindness.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Repeated or prolonged exposure to acids may result in the erosion of teeth, inflammatory and ulcerative changes in the

## Chronic

mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis. The impact of inhaled acidic agents on the respiratory tract depends upon a number of interrelated factors. These include physicochemical characteristics, e.g., gas versus aerosol; particle size (small particles can penetrate deeper into the lung); water solubility (more soluble agents are more likely to be removed in the nose and mouth). Given the general lack of information on the particle size of aerosols involved in occupational exposures to acids, it is difficult to identify their principal deposition site within the respiratory tract. Acid mists containing particles with a diameter of up to a few micrometers will be deposited in both the upper and lower airways. They are irritating to mucous epithelia, they cause dental erosion, and they produce acute effects in the lungs (symptoms and changes in pulmonary function). Asthmatics appear to be at particular risk for pulmonary effects.

| Vintessential Phosphoric Acid 85%      | TOXICITY                                                                                                                                                                                                                     | IRRITATION                        |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|
| (Vintessential<br>Phosphoric Acid 85%) | Not Available                                                                                                                                                                                                                | Not Available                     |  |
|                                        | TOXICITY                                                                                                                                                                                                                     | IRRITATION                        |  |
|                                        | Dermal (rabbit) LD50: >1260 mg/kg <sup>[2]</sup>                                                                                                                                                                             | Eye (rabbit): 119 mg - SEVERE     |  |
| phosphoric acid                        | Inhalation (rat) LC50: 0.0255 mg/L/4hr <sup>[2]</sup>                                                                                                                                                                        | Skin (rabbit):595 mg/24h - SEVERE |  |
|                                        | Oral (rat) LD50: 1.7 ml <sup>[1]</sup>                                                                                                                                                                                       |                                   |  |
|                                        | TOXICITY                                                                                                                                                                                                                     | IRRITATION                        |  |
| water                                  | Oral (rat) LD50: >90000 mg/kg <sup>[2]</sup>                                                                                                                                                                                 | Not Available                     |  |
| Legend:                                | 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances |                                   |  |

#### PHOSPHORIC ACID

for acid mists, aerosols, vapours

Data from assays for genotoxic activity in vitro suggest that eukaryotic cells are susceptible to genetic damage when the

Chemwatch: 5158-75 Page 10 of 13 Version No: 2.1.1.1

#### Vintessential Phosphoric Acid 85% (Vintessential Phosphoric Acid 85%)

Issue Date: 12/08/2014 Print Date: 12/21/2016

pH falls to about 6.5. Cells from the respiratory tract have not been examined in this respect. Mucous secretion may protect the cells of the airways from direct exposure to inhaled acidic mists, just as mucous plays an important role in protecting the gastric epithelium from its auto-secreted hydrochloric acid. In considering whether pH itself induces genotoxic events in vivo in the respiratory system, comparison should be made with the human stomach, in which gastric juice may be at pH 1-2 under fasting or nocturnal conditions, and with the human urinary bladder, in which the pH of urine can range from <5 to > 7 and normally averages 6.2. Furthermore, exposures to low pH in vivo differ from exposures in vitro in that, in vivo, only a portion of the cell surface is subjected to the adverse conditions, so that perturbation of intracellular homeostasis may be maintained more readily than in vitro.

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. phosphoric acid (85%)

#### **PHOSPHORIC ACID &** WATER

No significant acute toxicological data identified in literature search.

| Acute Toxicity                    | ✓        | Carcinogenicity             | 0 |
|-----------------------------------|----------|-----------------------------|---|
| Skin<br>Irritation/Corrosion      | <b>✓</b> | Reproductivity              | 0 |
| Serious Eye<br>Damage/Irritation  | <b>✓</b> | STOT - Single<br>Exposure   | 0 |
| Respiratory or Skin sensitisation | 0        | STOT - Repeated<br>Exposure | 0 |
| Mutagenicity                      | 0        | Aspiration Hazard           | 0 |

Leaend:

- ★ Data available but does not fill the criteria for classification
- Data required to make classification available
- N Data Not Available to make classification

## **SECTION 12 ECOLOGICAL INFORMATION**

#### **Toxicity**

| Ingredient      | Endpoint         | Test Duration (hr)                                                                                                            | Species                       | Value    | Source |
|-----------------|------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------|--------|
| phosphoric acid | LC50             | 96                                                                                                                            | Fish                          | 75.1mg/L | 2      |
| phosphoric acid | EC50             | 48                                                                                                                            | Crustacea                     | >376mg/L | 2      |
| phosphoric acid | EC50             | 72                                                                                                                            | Algae or other aquatic plants | 77.9mg/L | 2      |
| phosphoric acid | EC50             | 24                                                                                                                            | Crustacea                     | >376mg/L | 2      |
| phosphoric acid | NOEC             | 72                                                                                                                            | Algae or other aquatic plants | <7.5mg/L | 2      |
|                 | Extracted from 1 | Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity |                               |          |        |

Legend:

3. EPIWIN Suite V3.12 - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor

On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and /or delayed, to the structure and/ or functioning of natural ecosystems.

May cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

## Vintessential Phosphoric Acid 85% (Vintessential Phosphoric Acid 85%)

Issue Date: 12/08/2014 Print Date: 12/21/2016

#### **Ecotoxicity:**

The tolerance of water organisms towards pH margin and variation is diverse. Recommended pH values for test species listed in OECD guidelines are between 6.0 and almost 9. Acute testing with fish showed 96h-LC50 at about pH 3.5

Prevent, by any means available, spillage from entering drains or water courses.

DO NOT discharge into sewer or waterways.

## Persistence and degradability

| Ingredient      | Persistence: Water/Soil | Persistence: Air |
|-----------------|-------------------------|------------------|
| phosphoric acid | HIGH                    | HIGH             |
| water           | LOW                     | LOW              |

## **Bioaccumulative potential**

| Ingredient      | Bioaccumulation        |
|-----------------|------------------------|
| phosphoric acid | LOW (LogKOW = -0.7699) |
| water           | LOW (LogKOW = -1.38)   |

## Mobility in soil

| Ingredient      | Mobility         |
|-----------------|------------------|
| phosphoric acid | HIGH (KOC = 1)   |
| water           | LOW (KOC = 14.3) |

## **SECTION 13 DISPOSAL CONSIDERATIONS**

#### Waste treatment methods

Product / Packaging disposal

- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- ▶ Consult State Land Waste Management Authority for disposal.
- ▶ Treat and neutralise at an effluent treatment plant.
- ▶ Use soda ash or slaked lime to neutralise.
- Recycle containers, otherwise dispose of in an authorised landfill.

## **SECTION 14 TRANSPORT INFORMATION**

## **Labels Required**



| Marine Pollutant | NO |
|------------------|----|
| HAZCHEM          | 2R |

## Land transport (ADG)

| UN number                    | 1805                                        |  |
|------------------------------|---------------------------------------------|--|
| UN proper shipping name      | PHOSPHORIC ACID, SOLUTION                   |  |
| Transport hazard class(es)   | Class 8 Subrisk Not Applicable              |  |
| Packing group                | III                                         |  |
| Environmental hazard         | Not Applicable                              |  |
| Special precautions for user | Special provisions 223 Limited quantity 5 L |  |

## Air transport (ICAO-IATA / DGR)

**UN** number

1805

Chemwatch: 5158-75 Page 12 of 13

Issue Date: 12/08/2014 Version No: 2.1.1.1 Print Date: 12/21/2016

Vintessential Phosphoric Acid 85% (Vintessential Phosphoric Acid 85%)

| UN proper shipping name         | Phosphoric acid, solution                                 |                |        |  |
|---------------------------------|-----------------------------------------------------------|----------------|--------|--|
|                                 | ICAO/IATA Class                                           | 8              |        |  |
| Transport hazard class(es)      | ICAO / IATA Subrisk                                       | Not Applicable |        |  |
| ciass(es)                       | ERG Code                                                  | 8L             |        |  |
| Packing group                   | III                                                       | III            |        |  |
| Environmental hazard            | Not Applicable                                            |                |        |  |
|                                 | Special provisions                                        |                | A3A803 |  |
|                                 | Cargo Only Packing Instructions                           |                | 856    |  |
| Special precautions<br>for user | Cargo Only Maximum Qty / Pack                             |                | 60 L   |  |
|                                 | Passenger and Cargo Packing Instructions                  |                | 852    |  |
|                                 | Passenger and Cargo Maximum Qty / Pack                    |                | 5 L    |  |
|                                 | Passenger and Cargo Limited Quantity Packing Instructions |                | Y841   |  |
|                                 | Passenger and Cargo Limited Maximum Qty / Pack            |                | 1 L    |  |

## Sea transport (IMDG-Code / GGVSee)

| UN number                       | 1805                                                              |  |
|---------------------------------|-------------------------------------------------------------------|--|
| UN proper shipping name         | PHOSPHORIC ACID SOLUTION                                          |  |
| Transport hazard class(es)      | IMDG Class 8 IMDG Subrisk Not Applicable                          |  |
| Packing group                   |                                                                   |  |
| Environmental hazard            | Not Applicable                                                    |  |
| Special precautions<br>for user | EMS Number F-A, S-B Special provisions 223 Limited Quantities 5 L |  |

## Transport in bulk according to Annex II of MARPOL and the IBC code

| Source                                                                    | Product name    | Pollution Category | Ship Type |
|---------------------------------------------------------------------------|-----------------|--------------------|-----------|
| IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk | Phosphoric acid | Z                  | 3         |

## **SECTION 15 REGULATORY INFORMATION**

## Safety, health and environmental regulations / legislation specific for the substance or mixture

## PHOSPHORIC ACID(7664-38-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards Australia Hazardous Substances Information System - Consolidated Lists

Australia Inventory of Chemical Substances (AICS)

## WATER(7732-18-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

| National Inventory               | Status                     |
|----------------------------------|----------------------------|
| Australia - AICS                 | Y                          |
| Canada - DSL                     | Υ                          |
| Canada - NDSL                    | N (phosphoric acid; water) |
| China - IECSC                    | Υ                          |
| Europe - EINEC /<br>ELINCS / NLP | Υ                          |
| Japan - ENCS                     | N (water)                  |

Chemwatch: 5158-75 Page 13 of 13 Issue Date: 12/08/2014 Version No: 2.1.1.1 Print Date: 12/21/2016

## Vintessential Phosphoric Acid 85% (Vintessential Phosphoric Acid 85%)

| Korea - KECI        | Y                                                                                                                                                                                     |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New Zealand - NZIoC | Υ                                                                                                                                                                                     |
| Philippines - PICCS | Υ                                                                                                                                                                                     |
| USA - TSCA          | Υ                                                                                                                                                                                     |
| Legend:             | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) |

#### **SECTION 16 OTHER INFORMATION**

#### Other information

## Ingredients with multiple cas numbers

| Name            | CAS No                |
|-----------------|-----------------------|
| phosphoric acid | 7664-38-2, 16271-20-8 |

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

#### www.chemwatch.net

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

#### **Definitions and abbreviations**

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value **BCF**: BioConcentration Factors BEI: Biological Exposure Index

## This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.