Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Ajax Hydrogen Peroxide 30% 100 VOL

SYNONYMS
Name, "Product Code", "HYDROGEN PEROXIDE 30%", 260, "HYDROGEN PEROXIDE 305 100 VOL", 922, "HYDROGEN PEROXIDE 35% 120 VOL", 923, 2430, "HYDROGEN PEROXIDE 100 VOL M&B", 10328, 10525, "INTEROX AG BATH/HYDROGEN PEROXIDE", 11004, "INTEROX 50CG/HYDROGEN PEROXIDE", 11005, "30% 100 VOL", A5500, "100 VOL", BSPAS

PROPER SHIPPING NAME
HYDROGEN PEROXIDE, AQUEOUS SOLUTION

PRODUCT USE
Bleaching agents, chemical industry, electronic industry, metal treatment, odour agents, textile industry, water treatment and pulp and paper.

SUPPLIER
Company: Ajax Finechem
Address:
17/21 Bay Road
Tarren Point
NSW, 2223
Australia
Telephone: +61 2 9524 7744
Emergency Tel: 1800 638 556
Fax: +61 2 9524 3955

Section 2 - HAZARDS IDENTIFICATION

STATEMENT OF HAZARDOUS NATURE
HAZARDOUS SUBSTANCE. DANGEROUS GOODS. According to NOHSC Criteria, and ADG Code.

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th>Trait</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>Low=1</td>
</tr>
<tr>
<td>Toxicity</td>
<td>Moderate=2</td>
</tr>
<tr>
<td>Body Contact</td>
<td>High=3</td>
</tr>
<tr>
<td>Reactivity</td>
<td>Extreme=4</td>
</tr>
<tr>
<td>Chronic</td>
<td></td>
</tr>
</tbody>
</table>

continued...
Section 2 - HAZARDS IDENTIFICATION

RISK
- Contact with combustible material may cause fire.
- Harmful by inhalation and if swallowed.
- Causes burns.
- Risk of serious damage to eyes.
- Skin contact may produce health damage*.
- Cumulative effects may result following exposure*.
- Limited evidence of a carcinogenic effect*.

SAFETY
- Keep locked up.
- Keep away from combustible material.
- Do not breathe gas/ fumes/ vapour/ spray.
- Avoid contact with skin.
- Avoid contact with eyes.
- Wear suitable protective clothing.
- Wear suitable gloves.
- Wear eye/ face protection.
- Use only in well ventilated areas.
- Keep container in a well ventilated place.
- To clean the floor and all objects contaminated by this material, use water.
- Keep container tightly closed.
- Take off immediately all contaminated clothing.
- In case of contact with eyes, rinse with plenty of water and contact Doctor or Poisons Information Centre.
- In case of accident or if you feel unwell, IMMEDIATELY contact Doctor or Poisons Information Centre (show label if possible).
- If swallowed, IMMEDIATELY contact Doctor or Poisons Information Centre (show this container or label).
- This material and its container must be disposed of as hazardous waste.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>hydrogen peroxide</td>
<td>7722-84-1</td>
<td>30-60</td>
</tr>
<tr>
<td>ingredients non- hazardous including water</td>
<td>7732-18-5</td>
<td>30-60</td>
</tr>
</tbody>
</table>
Section 4 - FIRST AID MEASURES

SWALLOWED
• For advice, contact a Poisons Information Centre or a doctor at once.
• Urgent hospital treatment is likely to be needed.
• If swallowed do NOT induce vomiting.
• If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
• Observe the patient carefully.
• Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
• Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
• Transport to hospital or doctor without delay.

EYE
■ If this product comes in contact with the eyes:
 • Immediately hold eyelids apart and flush the eye continuously with running water.
 • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 • Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
 • Transport to hospital or doctor without delay.
 • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN
■ If skin or hair contact occurs:
 • Immediately flush body and clothes with large amounts of water, using safety shower if available.
 • Quickly remove all contaminated clothing, including footwear.
 • Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre.
 • Transport to hospital, or doctor.

INHALED
• If fumes or combustion products are inhaled remove from contaminated area.
• Lay patient down. Keep warm and rested.
• Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
• Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
• Transport to hospital, or doctor.
• Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema.
• Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs).
• As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested.
• Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered.
This must definitely be left to a doctor or person authorised by him/her.
(ICSC13719).

NOTES TO PHYSICIAN
■ Treat symptomatically.
Toxic myocarditis may follow ingestion of oxidizing agents such as peroxides.

continued...
Ajax Hydrogen Peroxide 30% 100 VOL

Ajax Hydrogen Peroxide 30% 100 VOL (REVIEW)
Issue Date: 23-Oct-2009
NC317TCP

Section 4 - FIRST AID MEASURES

BASIC TREATMENT

• Establish a patent airway with suction where necessary.
• Watch for signs of respiratory insufficiency and assist ventilation as necessary.
• Administer oxygen by non-rebreather mask at 10 to 15 l/min.
• Monitor and treat, where necessary, for pulmonary oedema.
• Monitor and treat, where necessary, for shock.
• Anticipate seizures.
• DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
• DO NOT attempt neutralisation as exothermic reaction may occur.
• Skin burns should be covered with dry, sterile bandages, following decontamination.

ADVANCED TREATMENT

• Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
• Positive-pressure ventilation using a bag-valve mask might be of use.
• Monitor and treat, where necessary, for arrhythmias.
• Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
• Drug therapy should be considered for pulmonary oedema.
• Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
• Treat seizures with diazepam.
• Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.
EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994.
Depending on the degree of exposure, periodic medical examination is indicated. The symptoms of lung oedema often do not manifest until a few hours have passed and they are aggravated by physical effort. Rest and medical observation is therefore essential. Immediate administration of an appropriate spray, by a doctor or a person authorised by him/her should be considered.

(ICSC24419/24421.

Section 5 - FIRE FIGHTING MEASURES

EXTINGUISHING MEDIA

■ FOR SMALL FIRE:
• USE FLOODING QUANTITIES OF WATER.
• DO NOT use dry chemical, CO2, foam or halogenated-type extinguishers.

FOR LARGE FIRE
• Flood fire area with water from a protected position.

FIRE FIGHTING
• Alert Fire Brigade and tell them location and nature of hazard.
• Wear breathing apparatus plus protective gloves for fire only.
• Prevent, by any means available, spillage from entering drains or water courses.
• Use fire fighting procedures suitable for surrounding area.
• DO NOT approach containers suspected to be hot.
• Cool fire exposed containers with water spray from a protected location.
• If safe to do so, remove containers from path of fire.

continued...
Ajax Hydrogen Peroxide 30% 100 VOL

Section 5 - FIRE FIGHTING MEASURES

• Equipment should be thoroughly decontaminated after use.

FIRE/EXPLOSION HAZARD
• Will not burn but increases intensity of fire.
• Heating may cause expansion or decomposition leading to violent rupture of containers.
• Heat affected containers remain hazardous.
• Contact with combustibles such as wood, paper, oil or finely divided metal may produce spontaneous combustion or violent decomposition.
• May emit irritating, poisonous or corrosive fumes.

FIRE INCOMPATIBILITY
• Avoid storage with reducing agents.
• Avoid any contamination of this material as it is very reactive and any contamination is potentially hazardous.

HAZCHEM
2P

Personal Protective Equipment
Breathing apparatus.
Chemical splash suit.

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
• Clean up all spills immediately.
• No smoking, naked lights, ignition sources.
• Avoid all contact with any organic matter including fuel, solvents, sawdust, paper or cloth and other incompatible materials, as ignition may result.
• Avoid breathing dust or vapours and all contact with skin and eyes.
• Control personal contact by using protective equipment.
• Contain and absorb spill with dry sand, earth, inert material or vermiculite.
• DO NOT use sawdust as fire may result.
• Scoop up solid residues and seal in labelled drums for disposal.
• Neutralise/decontaminate area.

MAJOR SPILLS
• Chemical Class: peroxides

For release onto land: recommended sorbents listed in order of priority.

<table>
<thead>
<tr>
<th>SORBENT TYPE</th>
<th>RANK</th>
<th>APPLICATION</th>
<th>COLLECTION</th>
<th>LIMITATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND SPILL - SMALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cross-linked polymer - particulate</td>
<td>1</td>
<td>shovel</td>
<td>shovel</td>
<td>R, W, SS</td>
</tr>
</tbody>
</table>

continued...
Accidental Release Measures

Cross-linked polymer - pillow
- 1 throw pitchfork R, DGC, RT

Sorbent clay - particulate
- 2 shovel R, I, P

Foamed glass - pillow
- 2 throw pitchfork R, P, DGC, RT

Land Spill - Medium

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
<th>Tool</th>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-linked polymer - particulate</td>
<td>1</td>
<td>Blower skiploader R, W, SS</td>
<td></td>
</tr>
<tr>
<td>Sorbent clay - particulate</td>
<td>2</td>
<td>Blower skiploader R, I, P</td>
<td></td>
</tr>
<tr>
<td>Polypropylene - particulate</td>
<td>2</td>
<td>Blower skiploader W, SS, DGC</td>
<td></td>
</tr>
<tr>
<td>Expanded mineral - particulate</td>
<td>3</td>
<td>Blower skiploader R, I, W, P, DGC</td>
<td></td>
</tr>
<tr>
<td>Polypropylene - mat</td>
<td>4</td>
<td>Throw skiploader DGC, RT</td>
<td></td>
</tr>
</tbody>
</table>

Legend
- **DGC**: Not effective where ground cover is dense
- **R**: Not reusable
- **I**: Not incinerable
- **P**: Effectiveness reduced when rainy
- **RT**: Not effective where terrain is rugged
- **SS**: Not for use within environmentally sensitive sites
- **W**: Effectiveness reduced when windy

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- No smoking, flames or ignition sources.
- Increase ventilation.
- Contain spill with sand, earth or other clean, inert materials.
- NEVER use organic absorbents such as sawdust, paper, cloth; as fire may result.
- Avoid any contamination by organic matter.
- Use spark-free and explosion-proof equipment.
- Collect any recoverable product into labelled containers for possible recycling.
- DO NOT mix fresh with recovered material.
- Collect residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- Decontaminate equipment and launder all protective clothing before storage and re-use.
- If contamination of drains or waterways occurs advise emergency services.

The table continues with more materials and quantities for different spill types and measures. The full document provides detailed guidance on the handling of Ajax Hydrogen Peroxide 30% 100 VOL in case of accidental release, including measures for both land spills and water spills.
PROTECTIVE ACTIONS FOR SPILL

From IERG (Canada/Australia)
Isolation Distance 25 metres
Downwind Protection Distance 100 metres
IERG Number 31

FOOTNOTES
1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.
2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.
3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.
4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered “small spills”.
 LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a “one-tonne” compressed gas cylinder.
5 Guide 140 is taken from the US DOT emergency response guide book.
6 IERG information is derived from CANUTEC - Transport Canada.

EMERGENCY RESPONSE PLANNING GUIDELINES (ERPG)
The maximum airborne concentration below which it is believed that nearly all individuals could be exposed for up to one hour WITHOUT experiencing or developing

 life-threatening health effects is:
 hydrogen peroxide 100ppm

 irreversible or other serious effects or symptoms which could impair an individual's ability to take protective action is:
 hydrogen peroxide 50ppm

 other than mild, transient adverse effects without perceiving a clearly defined odour is:
 hydrogen peroxide 10ppm

continued...
American Industrial Hygiene Association (AIHA)

Ingredients considered according to the following cutoffs

<table>
<thead>
<tr>
<th>Category</th>
<th>Cutoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Toxic (T+)</td>
<td>>= 0.1%</td>
</tr>
<tr>
<td>Toxic (T)</td>
<td>>= 3.0%</td>
</tr>
<tr>
<td>R50</td>
<td>>= 0.25%</td>
</tr>
<tr>
<td>Corrosive (C)</td>
<td>>= 5.0%</td>
</tr>
<tr>
<td>R51</td>
<td>>= 2.5%</td>
</tr>
<tr>
<td>else</td>
<td>>= 10%</td>
</tr>
</tbody>
</table>

where percentage is percentage of ingredient found in the mixture

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

• DO NOT allow clothing wet with material to stay in contact with skin.
• Avoid personal contact and inhalation of dust, mist or vapours.
• Provide adequate ventilation.
• Always wear protective equipment and wash off any spillage from clothing.
• Keep material away from light, heat, flammables or combustibles.
• Keep cool, dry and away from incompatible materials.
• Avoid physical damage to containers.
• DO NOT repack or return unused portions to original containers. Withdraw only sufficient amounts for immediate use.
• Contamination can lead to decomposition leading to possible intense heat and fire.
• When handling NEVER smoke, eat or drink.
• Always wash hands with soap and water after handling.
• Use only good occupational work practice.
• Observe manufacturer's storing and handling directions.

SUITABLE CONTAINER

• DO NOT repack. Use containers supplied by manufacturer only.

For low viscosity materials

• Drums and jerricans must be of the non-removable head type.
• Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids:

• Removable head packaging and
• cans with friction closures may be used.

• Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages *.

• In addition, where inner packagings are glass and contain liquids of packing group I and II there must be sufficient inert absorbent to absorb any spillage *.

• unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

STORAGE INCOMPATIBILITY

• Inorganic reducing agents react with oxidizing agents to generate heat and products that may be flammable, combustible, or otherwise reactive. Their reactions with oxidizing agents may be violent.

continued...
Ajax Hydrogen Peroxide 30% 100 VOL

Hazard Alert Code: HIGH

Ajax Hydrogen Peroxide 30% 100 VOL (REVIEW)
Issue Date: 23-Oct-2009
CHEMWATCH 4023296
NC317TCP

Section 7 - HANDLING AND STORAGE

- Incidents involving interaction of active oxidants and reducing agents, either by design or accident, are usually very energetic and examples of so-called redox reactions.
- Avoid any contamination of this material as it is very reactive and any contamination is potentially hazardous.
- Inorganic oxidising agents can react with reducing agents to generate heat and products that may be gaseous (causing pressurization of closed containers). The products may themselves be capable of further reactions (such as combustion in the air).
- Organic compounds in general have some reducing power and can in principle react with compounds in this class. Actual reactivity varies greatly with the identity of the organic compound.
- Inorganic oxidising agents can react violently with active metals, cyanides, esters, and thiocyanates.
- Avoid strong bases.
- Avoid storage with reducing agents.

STORAGE REQUIREMENTS

- In addition, Goods of Class 5.1, packing group II should be:
 - stored in piles so that the height of the pile does not exceed 1 metre
 - the maximum quantity in a pile or building does not exceed 1000 tonnes unless the area is provided with automatic fire extinguishers
 - the maximum height of a pile does not exceed 3 metres where the room is provided with automatic fire extinguishers or 2 meters if not.
 - the minimum distance between piles is not less than 2 metres where the room is provided with automatic fire extinguishers or 3 meters if not.
 - the minimum distance to walls is not less than 1 metre.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

+: May be stored together
O: May be stored together with specific preventions
X: Must not be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>hydrogen peroxide</td>
<td>1</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure Standards</td>
<td>Hydrogen peroxide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following materials had no OELs on our records
- water: CAS:7732- 18- 5

continued...
EMERGENCY EXPOSURE LIMITS

<table>
<thead>
<tr>
<th>Material</th>
<th>Revised IDLH Value (mg/m³)</th>
<th>Revised IDLH Value (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hydrogen peroxide</td>
<td>5</td>
<td>75 [Unch]</td>
</tr>
</tbody>
</table>

MATERIAL DATA

AJAX HYDROGEN PEROXIDE 30% 100 VOL:
Not available

HYDROGEN PEROXIDE:
■ for hydrogen peroxide

NOTE: Detector tubes for hydrogen peroxide, measuring in excess of 0.1 ppm, are available commercially. Exposure at or below the TLV-TWA is thought to minimise irritation and bleaching of hair.

WATER:
■ No exposure limits set by NOHSC or ACGIH.

PERSONAL PROTECTION

EYE
• Chemical goggles.
• Full face shield may be required for supplementary but never for primary protection of eyes.
• Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS1336 or national equivalent].

HANDS/FEET
• Wear chemical protective gloves, eg. PVC.
• Wear safety footwear or safety gumboots, eg. Rubber.
• When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
• frequency and duration of contact,
• chemical resistance of glove material,
• glove thickness and
dexterty

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).
• When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher

continued...
Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

(breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Leather wear not recommended: Contaminated leather footwear, watch bands, should be destroyed, i.e. burnt, as they cannot be adequately decontaminated.

OTHER

- Overalls.
- PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower.
- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets), non sparking safety footwear.

GLOVE SELECTION INDEX

- Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computer-generated selection: hydrogen peroxide

■ Protective Material CPI *

<table>
<thead>
<tr>
<th>Material Combination</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT+NEOPR+NITRILE</td>
<td>A</td>
</tr>
<tr>
<td>NATURAL RUBBER</td>
<td>A</td>
</tr>
<tr>
<td>NATURAL+NEOPRENE</td>
<td>A</td>
</tr>
<tr>
<td>NEOPRENE</td>
<td>A</td>
</tr>
<tr>
<td>NEOPRENE/NATURAL</td>
<td>A</td>
</tr>
<tr>
<td>NITRILE</td>
<td>A</td>
</tr>
<tr>
<td>PVC</td>
<td>A</td>
</tr>
</tbody>
</table>

■ CPI - Chemwatch Performance Index

A: Best Selection
B: Satisfactory; may degrade after 4 hours continuous immersion
C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation.

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

RESPIRATOR

- Type B Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required. For further information consult site specific CHEMWATCH data (if available), or your Occupational Health and Safety Advisor.

continued...
ENGINEERING CONTROLS

Engineer controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.
- Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant: Air Speed:

- solvent, vapours, degreasing etc., evaporating from tank (in still air). 0.25-0.5 m/s (50-100 f/min)
- aerosols, fumes from pouring operations, 0.5-1 m/s (100-200 f/min.)
- intermittent container filling, low speed conveyor transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) direct spray, spray painting in shallow booths, 1-2.5 m/s (200-500 f/min.)
- drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). 2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

- Lower end of the range
 1: Room air currents minimal or favourable to capture
 2: Contaminants of low toxicity or of nuisance value only.
 3: Intermittent, low production.
 4: Large hood or large air mass in motion

- Upper end of the range
 1: Disturbing room air currents
 2: Contaminants of high toxicity
 3: High production, heavy use
 4: Small hood- local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example,
should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters
distant from the extraction point. Other mechanical considerations, producing performance deficits within the
extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or
more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE
Clear colourless liquid with a pungent odour; mixes with water.

PHYSICAL PROPERTIES
Liquid.
Mixes with water.
Corrosive.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Liquid</td>
</tr>
<tr>
<td>Melting Range (°C)</td>
<td>-52</td>
</tr>
<tr>
<td>Boiling Range (°C)</td>
<td>115</td>
</tr>
<tr>
<td>Flash Point (°C)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Decomposition Temp (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Autoignition Temp (°C)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Viscosity</td>
<td>1.17 cSt@20 deg C</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Miscible</td>
</tr>
<tr>
<td>pH (1% solution)</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>1-4</td>
</tr>
<tr>
<td>Vapour Pressure (kPa)</td>
<td>1 @20 deg C</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>1.2 (water=50%)</td>
</tr>
<tr>
<td>Relative Vapour Density (air=1)</td>
<td>1</td>
</tr>
<tr>
<td>Evaporation Rate</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Section 10 - STABILITY AND REACTIVITY

CONDITIONS CONTRIBUTING TO INSTABILITY
- Presence of incompatible materials.
- Product is considered stable under normal handling conditions.
- Prolonged exposure to heat.
- Hazardous polymerisation will not occur.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less
 than 150 gram may be fatal or may produce serious damage to the health of the individual.
- The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion.
Section 11 - TOXICOLOGICAL INFORMATION

EYE

- The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating.
- If applied to the eyes, this material causes severe eye damage.

SKIN

- The material can produce chemical burns following direct contact with the skin.
- Skin contact is not thought to produce harmful health effects (as classified under EC Directives using animal models). Systemic harm, however, has been identified following exposure of animals by at least one other route and the material may still produce health damage following entry through wounds, lesions or abrasions.
- Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Skin contact will result in rapid drying, bleaching, leading to chemical burns on prolonged contact.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- The material is not thought to produce adverse health effects following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Not normally a hazard due to non-volatile nature of product.
- Inhalation of quantities of liquid mist may be extremely hazardous, even lethal due to spasm, extreme irritation of larynx and bronchi, chemical pneumonitis and pulmonary oedema.

CHRONIC HEALTH EFFECTS

- Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis.
- Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

TOXICITY AND IRRITATION

- Unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

- Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.
Hydrogen peroxide is a naturally occurring substance (typical background concentrations < 1 - 30 g/l). Almost all cells with the exception of anaerobic bacteria produce it in their metabolism. Hydrogen peroxide is a reactive substance in the presence of other substances, elements, radiation, materials and can be degraded by micro-organisms or higher organisms.

Air: Hydrogen peroxide may be removed from the atmosphere by photolysis giving rise to hydroxyl radicals, by reaction with hydroxyl radicals, or by heterogeneous loss processes such as rain-out. Significantly higher hydrogen peroxide concentrations are found in polluted atmospheres as compared with clean air. These concentrations are believed to arise from photochemically-initiated oxidation of reactive hydrocarbons. Under severe smog conditions, daytime levels of hydrogen peroxide as high as 0.18 ppm have been reported, but atmospheric night-time levels of 2-5 ppb did not correlate to smog intensity.

Soil: No information was found in the secondary sources searched regarding the transformation or persistence of hydrogen peroxide in soil, however, solutions of hydrogen peroxide gradually deteriorate.

Water: Hydrogen peroxide is a naturally occurring substance. Surface water concentrations of hydrogen peroxide have been found to vary between 51-231 mg/L, increasing both with exposure to sunlight and the presence of dissolved organic matter.

Hydrogen peroxide degrades by various mechanisms, including chemical reduction and enzymatic (catalase and peroxidase) decomposition by algae, zooplankton, and bacteria. Microorganisms, especially bacteria, account for the majority of degradation, significantly more than all other chemical and biological mechanisms. The continued...
rate at which hydrogen peroxide decomposes in natural water can vary from a few minutes to more than a week, depending on numerous chemical, biological, and physical factors. Hydrogen peroxide is rapidly degraded in a biological waste water treatment plant. Hydrogen peroxide adsorbs poorly to sediment particles and is rapidly degraded, thus accumulation in the sediment is also not expected. Hydrogen peroxide (log Kow < -1) is an inorganic substance and therefore shows little potential to bioaccumulate.

Ecotoxicity:
Fish LC50 (96 h): catfish 37.4 mg/l
Fish LC50 (24 h): mackerel 89 mg/l; chameleon gobi 155 mg/l
Zebra mussel LC50 (28 h) 30 mg/l; (228 h): 12 mg/l

Ecotoxicity data show that microorganisms (i.e., bacteria, algae) and zooplankton present in aquatic ecosystems are generally less tolerant of hydrogen peroxide exposure than are fish or other vertebrates. Effects of short-term exposures on sensitive bacteria and invertebrates (e.g., Daphnia pulex) have been observed at concentrations in the low mg/L (ppm) range, while effects on sensitive algae have been reported at levels less than 1.0 mg/L. Algae are the most sensitive species for hydrogen peroxide. The algal EC50 of hydrogen peroxide was 1.6-5 mg/l, while the NOEC was 0.1 mg/l. In a 21-d continuous exposure study on Daphnia magna, the chronic no observable effect concentration (NOEC) for reproduction was 0.63 mg/L and the NOEC for mortality was 1.25 mg/L.

In chronic toxicity studies with invertebrates (zebra mussels) and hydrogen peroxide shows an NOEC of 2 mg/l. The PNEC of hydrogen peroxide is equal to 10 ug/l.

Risk mitigation is needed to ensure that use of hydrogen peroxide will not adversely impact aquatic life. An acute water quality criterion or "benchmark" has been determined. For hydrogen peroxide, the acute benchmark is 0.7 mg/L. This value was calculated using the extensive toxicity database for hydrogen peroxide and procedures in U.S. Environmental Protection Agency guidance for deriving numerical national water quality criteria. The use of hydrogen peroxide in intensive aquaculture in finfish (at up to 100 mg/L for 60 minutes) and finfish eggs (at up to 1,000 mg/L for 15 minutes) is not expected to have a significant impact on the environment.

DO NOT discharge into sewer or waterways.

WATER:

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajax Hydrogen Peroxide 30% 100 VOL hydrogen peroxide</td>
<td>No Data</td>
<td>No Data</td>
<td>Available</td>
<td>LOW</td>
</tr>
</tbody>
</table>

Section 13 - DISPOSAL CONSIDERATIONS

- Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.
Otherwise:
- If container cannot be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and MSDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:
Section 13 - DISPOSAL CONSIDERATIONS

• Reduction
• Reuse
• Recycling
• Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

• DO NOT allow wash water from cleaning or process equipment to enter drains.
• It may be necessary to collect all wash water for treatment before disposal.
• In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
• Where in doubt contact the responsible authority.

For small quantities of oxidising agent:
• Cautiously acidify a 3% solution to pH 2 with sulfuric acid.
• Gradually add a 50% excess of sodium bisulfite solution with stirring.
• Add a further 10% sodium bisulfite.
• If no further reaction occurs (as indicated by a rise in temperature) cautiously add more acid.
• Recycle wherever possible.
• Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
• Treat and neutralise at an approved treatment plant. Treatment should involve: Neutralisation followed by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material)
• Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

Labels Required: OXIDIZING AGENT, CORROSIVE

HAZCHEM:
2P (ADG7)

Land Transport UNDG:
Class or division: 5.1 Subsidiary risk: 8
UN No.: 2014 UN packing group: II
Shipping Name: HYDROGEN PEROXIDE, AQUEOUS SOLUTION with not less than 20% but not more than 60% hydrogen peroxide (stabilized as necessary)

Air Transport IATA:
ICAO/IATA Subrisk: None UN/ID Number: 2014
Packing Group: II Special provisions: None Cargo Only

continued...
Ajax Hydrogen Peroxide 30% 100 VOL

Section 14 - TRANSPORTATION INFORMATION

Packing Instructions: 554
Maximum Qty/Pack: 5 L
Passenger and Cargo

Packing Instructions: 550
Maximum Qty/Pack: 1 L
Passenger and Cargo Limited Quantity

Packing Instructions: Y540
Maximum Qty/Pack: 0.5 L
Passenger and Cargo Limited Quantity

Shipping Name: HYDROGEN PEROXIDE, AQUEOUS SOLUTION WITH 20% OR MORE BUT 40% OR LESS HYDROGEN PEROXIDE (STABILIZED AS NECESSARY)

Maritime Transport IMDG:
IMDG Class: 5.1
UN Number: 2014
EMS Number: F-H,S-Q
Limited Quantities: 1 L

Special provisions: None

Shipping Name: HYDROGEN PEROXIDE, AQUEOUS SOLUTION with not less than 20% but not more than 60% hydrogen peroxide (stabilized as necessary)

Section 15 - REGULATORY INFORMATION

POISONS SCHEDULE S6

REGULATIONS

Regulations for ingredients

hydrogen peroxide (CAS: 7722-84-1) is found on the following regulatory lists;
"Australia - Victoria Occupational Health and Safety Regulations - Schedule 9: Materials at Major Hazard Facilities (And Their Threshold Quantity) Table 2","Australia Dangerous Goods Code (ADG Code) - Goods Too Dangerous To Be Transported","Australia Exposure Standards","Australia Hazardous Substances","Australia High Volume Industrial Chemical List (HVICL)","Australia Inventory of Chemical Substances (AICS)","Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)","Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 3)","Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5","Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6","Australia Therapeutic Goods Administration (TGA) Substances that may be used as active ingredients in Listed medicines","GESAMP/EHS Composite List - GESAMP Hazard Profiles","IMO IBC Code Chapter 17: Summary of minimum requirements","IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk","International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs","International Air Transport Association (IATA) Dangerous Goods Regulations"

water (CAS: 7732-18-5) is found on the following regulatory lists;
"Australia Inventory of Chemical Substances (AICS)","IMO IBC Code Chapter 18: List of products to which the Code does not apply","International Fragrance Association (IFRA) Survey: Transparency List"

No data for Ajax Hydrogen Peroxide 30% 100 VOL (CW: 4023296)
Section 16 - OTHER INFORMATION

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: 23-Oct-2009
Print Date: 18-Oct-2011

This is the end of the MSDS.